Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Are non‐native plants abundant because they are non‐native, and have advantages over native plants, or because they possess ‘fast’ resource strategies, and have advantages in disturbed environments? This question is central to invasion biology but remains unanswered.We quantified the relative importance of resource strategy and biogeographic origin in 69 441 plots across the conterminous United States containing 11 280 plant species.Non‐native species had faster economic traits than native species in most plant communities (77%, 86% and 82% of plots for leaf nitrogen concentration, specific leaf area, and leaf dry matter content). Non‐native species also had distinct patterns of abundance, but these were not explained by their fast traits. Compared with functionally similar native species, non‐native species were (1) more abundant in plains and deserts, indicating the importance of biogeographic origin, and less abundant in forested ecoregions, (2) were more abundant where co‐occurring species had fast traits, for example due to disturbance, and (3) showed weaker signals of local environmental filtering.These results clarify the nature of plant invasion: Although non‐native plants have consistently fast economic traits, other novel characteristics and processes likely explain their abundance and, therefore, impacts.more » « lessFree, publicly-accessible full text available June 24, 2026
-
Identifying the mechanisms underlying the persistence of rare species has long been a motivating question for ecologists. Classical theory implies that community dynamics should be driven by common species, and that natural selection should not allow small populations of rare species to persist. Yet, a majority of the species found on Earth are rare. Consequently, several mechanisms have been proposed to explain their persistence, including negative density dependence, demographic compensation, vital rate buffering, asynchronous responses of subpopulations to environmental heterogeneity, and fine‐scale source‐sink dynamics. Persistence of seeds in a seed bank, which is often ignored in models of population dynamics, can also buffer small populations against collapse. We used integral projection models (IPMs) to examine the population dynamics ofOenothera coloradensis, a rare, monocarpic perennial forb, and determine whether any of five proposed demographic mechanisms for rare species persistence contribute to the long‐term viability of two populations. We also evaluate how including a discrete seed bank stage changes these population models. Including a seed bank stage in population models had a significantly increased modeledO. coloradensispopulation growth rate. Using this structured population model, we found that negative density‐dependence was the only supported mechanism for the persistence of this rare species. We propose that high micro‐site abundances within a spatially heterogeneous environment enables this species to persist, allowing it to sidestep the demographic and genetic challenges of small population size that rare species typically face. The five mechanisms of persistence explored in our study have been demonstrated as effective strategies in other species, and the fact that only one of them had strong support here supports the idea that globally rare species can employ distinct persistence strategies. This reinforces the need for customized management and conservation strategies that mirror the diversity of mechanisms that allow rare species persistence.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species’ ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species’ potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.more » « less
-
ABSTRACT AimBeta diversity quantifies the similarity of ecological assemblages. Its increase, known as biotic homogenisation, can be a consequence of biological invasions. However, species occurrence (presence/absence) and abundance‐based analyses can produce contradictory assessments of the magnitude and direction of changes in beta diversity. Previous work indicates these contradictions should be less frequent in nature than in theory, but a growing number of empirical studies report discrepancies between occurrence‐ and abundance‐based approaches. Understanding if these discrepancies represent a few isolated cases or are systematic across a diversity of ecosystems would allow us to better understand the general patterns, mechanisms and impacts of biotic homogenisation. LocationUnited States. Time Period1963–2020. Major Taxa StudiedVascular plants. MethodsWe used a dataset of more than 70,000 vegetation survey plots to assess differences in biotic homogenisation with and without invasion using both occurrence‐ and abundance‐based metrics of beta diversity. We estimated taxonomic biotic homogenisation by comparing beta diversity of invaded and uninvaded plots with both classes of metrics and investigated the characteristics of the non‐native species pool that influenced the likelihood that these metrics disagree. ResultsIn 78% of plot comparisons, occurrence‐ and abundance‐based calculations agreed in direction, and the two metrics were generally well correlated. Our empirical results are consistent with previous theory. Discrepancies between the metrics were more likely when the same non‐native species was at high cover at both plots compared for beta diversity, and when these plots were spatially distant. Main ConclusionsIn about 20% of cases, our calculations revealed differences in direction (homogenisation vs. differentiation) when comparing occurrence‐ and abundance‐based metrics, indicating that the metrics are not interchangeable, especially when distances between plots are high and invader diversity is low. When data permit, combining the two approaches can offer insights into the role of invasions and extirpations in driving biotic homogenisation/differentiation.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants. We find that communities with greater abundance of naturalized species are more resource acquisitive aboveground and belowground, shorter, more shallowly rooted, and increasingly aligned with an independent strategy for belowground resource acquisition via thin fine roots with high specific root length. We observe shifts toward herbaceous-dominated communities but shifts within both woody and herbaceous functional groups follow community-level patterns for most traits. Patterns are remarkably similar across desert, grassland, and forest ecosystems. Our results demonstrate that the establishment and spread of naturalized species, likely in combination with underlying environmental shifts, leads to predictable and consistent changes in community-level traits that can alter ecosystem functions.more » « less
-
Abstract Plant populations are limited by resource availability and exhibit physiological trade‐offs in resource acquisition strategies. These trade‐offs may constrain the ability of populations to exhibit fast growth rates under water limitation and high cover of neighbours. However, traits that confer drought tolerance may also confer resistance to competition. It remains unclear how fitness responses to these abiotic conditions and biotic interactions combine to structure grassland communities and how this relationship may change along a gradient of water availability.To address these knowledge gaps, we estimated the low‐density growth rates of populations in drought conditions with low neighbour cover and in ambient conditions with average neighbour cover for 82 species in six grassland communities across the Central Plains and Southwestern United States. We assessed the relationship between population tolerance to drought and resistance to competition and determined if this relationship was consistent across a precipitation gradient. We also tested whether population growth rates could be predicted using plant functional traits.Across six sites, we observed a positive correlation between low‐density population growth rates in drought and in the presence of interspecific neighbours. This positive relationship was particularly strong in the grasslands of the northern Great Plains but weak in the most xeric grasslands. High leaf dry matter content and a low (more negative) leaf turgor loss point were associated with high population growth rates in drought and with neighbours in most grassland communities.Synthesis: A better understanding of how both biotic and abiotic factors impact population fitness provides valuable insights into how grasslands will respond to extreme drought. Our results advance plant strategy theory by suggesting that drought tolerance increases population resistance to interspecific competition in grassland communities. However, this relationship is not evident in the driest grasslands, where above‐ground competition is likely less important. Leaf dry matter content and turgor loss point may help predict which populations will establish and persist based on local water availability and neighbour cover, and these predictions can be used to guide the conservation and restoration of biodiversity in grasslands.more » « less
-
Abstract Functional traits affect the demographic performance of individuals in their environment, leading to fitness differences that scale up to drive population dynamics and community assembly. Understanding the links between traits and fitness is, therefore, critical for predicting how populations and communities respond to environmental change. However, the net effects of traits on species fitness are largely unknown because we have lacked a framework for estimating fitness across multiple species and environments.We present a modelling framework that integrates trait effects on demographic performance over the life cycles of individuals to estimate the net effect of traits on species fitness. This approach involves (1) modelling trait effects on individual demographic rates (growth, survival and recruitment) as multidimensional performance surfaces that vary with individual size and environment and (2) integrating these effects into a population model to project population growth rates (i.e., fitness) as a function of traits and environment. We illustrate our approach by estimating performance surfaces and fitness landscapes for trees across a temperature gradient in the eastern United States.Functional traits (wood density, specific leaf area and maximum height) interacted with individual size and temperature to influence tree growth, survival and recruitment rates, generating demographic trade‐offs and shaping the contours of fitness landscapes. Tall tree species had high survival, growth and fitness across the temperature gradient. Wood density and specific leaf area had interactive effects on demographic performance, resulting in fitness landscapes with multiple peaks.With this approach it is now possible to empirically estimate the net effect of traits on fitness, leading to an improved understanding of the selective forces that drive community assembly and permitting generalizable predictions of population and community dynamics in changing environments.more » « less
An official website of the United States government
